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Plutonium dioxide (PuO2) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal
properties of PuO2 at high temperature, it is important to understand the properties of MOX fuel. In this
study, thermodynamic properties of PuO2 were evaluated by coupling of first-principles and lattice
dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribu-
tion of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties
such as volume thermal expansion, bulk modulus and specific heat of PuO2 were investigated up to
1500 K.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Plutonium, which is generated in an operating nuclear reactor
due to transmutation of uranium, is one of the important element
as nuclear fuel. It is necessary to evaluate the thermodynamical
properties at high temperature for development of nuclear fuel.
Sobolev proposed a semi-empirical model to calculate the thermo-
dynamical properties based on simple models of phonon and elec-
tron spectra [1]. In this paper, we propose a theoretical model
based on first-principles results. The first-principles calculations
are limited to a few 100 atoms and do not provide the concept of
temperature. Generally, first-principles calculations are performed
for the ground state, i.e., at zero temperature. Recently, a coupling
of first-principles calculation and lattice dynamics has been shown
to provide computational thermodynamic data [2–4].

In this paper, we apply the coupling method to evaluate ther-
modynamic properties based on first-principles results. First-prin-
ciples molecular dynamics simulation has been carried out using
the Vienna Ab Initio Simulation Package (VASP) [5], which is a den-
sity functional theory-based code for systems with periodic bound-
ary conditions. The electron cohesive energy and the electronic
structure have been calculated by the projector augmented-wave
(PAW) method within the generalized gradient approximation
(GGA) for exchange-correlation density and potential, using the
Perdew–Wang parameterization. The calculations were performed
ll rights reserved.

inamoto).
with the HITACHI/SR-8000 at Tohoku University. The phonon code
by Parlinski [6] was used to calculate the vibrational properties.

2. Computational methodology

2.1. Thermodynamical quantities

Kuwabara calculated phonon vibrations and their density of
states in ZrO2 by first-principles lattice dynamics calculations [3].
To compute thermodynamical quantities such as specific heat,
the phonon contribution to the Helmholtz free energies was inves-
tigate as follows;

FðV ; TÞ ¼ EcðV ; 0 KÞ þ FphðV ; TÞ þ FelðV ; TÞ; ð1Þ

where V is the volume, T is the temperature, ECðV ;0 KÞ is the vol-
ume-dependent cohesive energy from first-principles calculations.
Fph is a lattice vibration energy, which is calculated based on the
phonon density of states. Fel is an electron excitation energy. Here
we focused on only the contribution of atom vibrations. Thus the
energy of electron excitation is not discussed. The lattice vibration
energy Fph is given by,

FphðV ; TÞ ¼ kBT
X

q

X
j

ln 2 sinh
�hxðq;VÞ

2kBT

� �
; ð2Þ

where �h and kB are reduced Plank constant and Boltzmann constant,
respectively. xðq;VÞ represents a vibration frequency of jth phonon
at wave vector q.

The specific heat for constant volume CV is obtained directly
from,
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Fig. 1. Phonon dispersion and the density of states of PuO2.
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CV ¼
oF
oT

� �
V
¼ rkB

Z 1

0
gvibðxÞ

�hx
kBT

� �2 exp �hx
kBT

ðexp �hx
kBT � 1Þ2

dx; ð3Þ

where r is the degree of freedom, gvib is the phonon density of
states. Then the specific heat at constant pressure CP is given by,

CP � CV ¼ a2
V ðTÞbðTÞVðTÞT; ð4Þ

where the constant volume thermal expansion aV is defined by,

aV ¼
1
V

oV
oT

� �
p
: ð5Þ

In order to relate the energy and thermal properties, the third-
order Birch–Murnaghan equation of state (BMEOS) is used. Let x be
V0=V ,

FðVÞ ¼ E0 þ
9V0b

16
x

2
3 � 1

� �3
b0 þ x

2
3 � 1

� �2
6� 4x

2
3

� �� �
; ð6Þ

where V0 is the reference volume at 0 K. The bulk modulus bðTÞ of a
fluid or a solid given by Eq. (7) is the inverse of the compressibility,

bðTÞ ¼ �V
oP
oV

; ð7Þ

where P is the pressure. The bulk modulus measures the response in
pressure due to a change in relative volume, essentially measuring
the substance resistance to uniform compression. b0 ¼ ob=oP is the
pressure derivative of bulk modulus.

3. The first-principles and lattice vibration calculations

The first-principles and phonons calculations were carried out
with 96 atoms for a perfect crystal of Pu32O64 that corresponds
to a 2 � 2 � 2 unit cell of fluorite structure.

To obtain the thermodynamic data from the first-principles cal-
culation at 0 K, generalized gradient approximation (GGA) was ap-
plied and spin polarization was taken into account, and an energy
of 500 eV was chosen for the plane-wave cutoff.

A direct method was applied to evaluate the vibrational contri-
bution to the total free energy. We induced single displacements of
non-equivalent atoms of the supercell to calculate the force con-
stants from Hellmann–Feynman forces from first-principles calcu-
lations. A harmonic approximation for each lattice constant, i.e.,
quasi-harmonic approximation has been applied. This enabled us
to take a thermal expansion into account. A quasi-harmonic
approximation that assumes phonon frequencies that only depend
on the cell parameters was considered here.

Then a relation between the Helmholtz free energy F and the
volume V (F–V curve) was obtained for various temperatures and
volumes by Eq. (2).
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Fig. 2. Helmholtz free energy curve at various temperatures (solid line) and the
locus of the minimum of the free energy (symbol ”+”) for PuO2.
4. Result and discussion

4.1. Phonon dispersion and the density of states

The phonon band structure and the density of states for a per-
fect crystal of PuO2 are shown in Fig. 1. The contribution of the lat-
tice vibrations to the total energy can be obtained from the density
of states by Eq. (2).

Plutonium atom is heavier than oxygen atom, thus the vibration
frequency of plutonium atom is lower than that of oxygen atom.
Therefore, the phonon density of states splits into two parts, one
is the lower part up to 5 THz where the vibrations of plutonium
atoms are dominant and the other part at higher frequencies where
the vibrations of oxygen atoms are dominant. Thus mainly the
thermal conductivity depends on the vibrations of plutonium at
lower frequencies in Fig. 1.
4.2. Total energy and equilibrium lattice parameter

Fig. 2 shows the Helmholtz free energy at each temperature
from 0 K to 1500 K. In order to determine the bulk modulus bðTÞ,
its derivative b0ðTÞ and the equilibrium lattice volume V, we ap-
plied the third-order Birch–Murnaghan equation of state (BMEOS)
and fitted to the total energy F at each temperature [7].

Minimum points of each (F–V) curve in Fig. 2 mean equilibrium
lattice parameters at every temperature. Thus, as temperature in-
creases, the minimum of the free energy curve shifts to larger lat-
tice parameter. The resulting lattice constant at room temperature
is 5.399 Å in Fig. 2, while the experimental lattice constant is
5.396 Å.

The bulk modulus for PuO2 has not been measured experimen-
tally, however, bulk modulus for other similar compounds have
been measured. The result of the bulk modulus of PuO2 from this
study is 266 GPa at room temperature, which is realistic compared
to other data from Sobolev [1]. For example the bulk modulus of
211 GPa of UO2 at room temperature, and 198 GPa of ThO2 were
reported [1]. Fig. 3 shows the temperature dependence of the bulk
modulus.

4.3. Bulk modulus and lattice parameter

Theoretical and experimental lattice parameters are shown in
Fig. 4. A lattice parameter of 5.386 Å at 0 K was used to evaluate
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Fig. 3. Temperature dependence of the bulk modulus of PuO2.
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Fig. 4. Calculated and experimental lattice parameters of PuO2.
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Fig. 5. Calculated and experimental specific heats of PuO2 (Solid line: calculated
specific heat at constant pressure. Dotted line : calculated specific heat at constant
volume).
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the experimental coefficients of thermal expansion (CTE) [8–11].
The CTE was obtained with equilibrium lattice parameter at vari-
ous temperatures from a free energy fit to a BMEOS.

4.4. Specific heat

Calculated and experimental CP [9–11] are shown in Fig. 5. Here
we applied the exact expression for a, i.e., fitted to a higher-order
polynomial and obtained derivatives analytically from Eq. (5). The
disagreement of specific heat at constant pressure at the medium
temperature (300–1000 K), also reported by Sobolev [1] can be
attributed to the mismatch of the bulk modulus b or mass of atoms
[12]. However as Sobolev pointed out that the difference between
the calculated and the experimental specific heat in the medium
temperature was still a problem. Some models except for lattice
vibration have been suggested to improve the disagreement
[13,14].

5. Conclusion

The thermodynamic properties of PuO2 have been investigated
at finite temperature with a combination of first-principles and lat-
tice dynamics calculations. In the framework of GGA and quasi-
harmonic approximation, the Helmholtz free energy was obtained
as a function of volume and temperature. With the derived free en-
ergy, equilibrium lattice parameter and bulk modulus were ob-
tained by fitting to the third-order Birch–Murnaghan EOS. The
calculated lattice parameter, thermal expansion coefficient, and
specific heat reproduced the experimental data well up to
1500 K. It is noteworthy that the thermodynamic properties of
PuO2 were evaluated with no experimental data.
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